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Abstract—Images compressed at low bit rates usually suffer 

from annoying artifacts due to coarse quantization of transform 

coefficients. In this paper, we propose a soft-thresholding scheme 

to reduce compression noise with content-based noise level 

estimation. In the proposed method, a compressed image is 

divided into multiple similar image patch groups, and the 

compression noise is estimated from every group respectively 

based on coefficient distribution in transform domain. For each 

group of similar patches, soft-thresholding is applied to the 

singular values in the singular value decomposition (SVD) of 

every group of similar patches. The threshold is adaptively 

determined based on the standard deviation of image signals and 

compression noise. Finally, quantization constraint is applied to 

estimated images to avoid over-smoothing. Extensive 

experimental results show that the proposed method improves 

the quality of compressed images obviously, and outperforms 

state-of-the-art denoising algorithms significantly. 

I. INTRODUCTION 

Block discrete cosine transform (BDCT) is widely used in 

existing image/video coding standards, e.g., JPEG and 

MPEG-2, to reduce the spatial correlation among neighboring 

pixels. In general compression process, an image is first 

divided into non-overlapped blocks, and then compressed by 

sequentially transforming with BDCT, quantizing and entropy 

coding independently for every block. One major problem in 

BDCT based image compression is that annoying 

compression noise severely degenerate the image quality 

especially when it is compressed at very low bit rates. The 

compression noise not only leads to a poor user experience 

but also deteriorate the performance of many computer vision 

algorithms.  

In order to improve image quality, lots of image denoising 

methods are proposed in literatures these years [1]-[8]. Most 

of existing denoising algorithms focus on dealing with 

additive white Gaussian noise, which are independent and 

identical distributed in the whole image. Buades et al. [1] 

proposed the nonlocal means filter to predict each pixel by a 

weighted average of its surrounding pixels, where the weights 

are determined by the similarity of the corresponding image 

patches located at the source and target coordinates. Takeda et 

al. [2] proposed a signal-dependent steering kernel regression 

framework for denoising, which takes the covariance of 

image local gradients to derive edge directions. However, the 

filtering strength of these methods is difficult to control, 

which may lead to blur images due to over-smoothing. 

In order to avoid over-smoothing, Zhai et al. [3] utilized 

quantization intervals to constrain the filtered coefficients in 

the same range with the original ones. Sun and Cham [4] 

modeled the original image as a high order Markov random 

field (MRF) based on the field of experts (FoE) framework 

and utilized quantization steps to estimate compression noise 

variance, which is utilized to control filtering strength. Zhang 

et al. [5] [6] proposed a multi-prediction adaptive fusion 

framework by modeling transform coefficients with 

generalized Gaussian distribution (GGD) to remove 

compression noise. In the latest video coding standards, 

HEVC, the strength of deblocking filter [7] is adaptively 

determined according to coding modes and quantization 

parameters (QP), and the adaptive loop filter (ALF) [8] 

directly derives filter parameters based on the original images 

and reconstructed images in encoder side.  

In recent years, image sparse prior for group of similar 

image patches are widely studied in literatures and achieves 

significant improvement in image restoration [9]-[11].  The 

well-known denoising filter, BM3D [9], enhanced image 

sparsity by clustering similar 2-D image patches into 3-D data 

arrays and collaborative filtering is implemented by shrinking 

the transform coefficients of these 3-D data. Liu et al. [10] 

utilized trained over-complete dictionary to get much sparser 

representation for noisy images, and Ren et al. [11] removed 

compression noise by soft-thresholding singular values of 

noisy images.   

In this paper, we investigate the compression noise 

estimation and reduction problems for block discrete cosine 

transform (BDCT) based image compression methods. In our 

proposed method, we remove compression noise by soft-

thresholding singular values of every group of image patches 

with similar structures. Then, image patches are reconstructed 

with the shrunken singular values and a noise-alleviative 

image is further reconstructed by weighted average of these 

image patches. For each group, we first derive the standard 

deviation of image signals and compression noise adaptively 

from the noisy image, which jointly determine the threshold 

for singular values. Then, the image noise is reduced by 

thresholding singular values of similar image patches. This 

process can be performed iteratively to improve the image 

quality with updated image signals. Finally, in order to avoid 

the over-smoothing, narrow quantization constraint (NQC) is 

applied to restored images. 
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The remainder of this paper is organized as follows. 

Section II introduces the proposed compression noise 

estimation and reduction method. Extensive experimental 

results and analysis are reported in Section III, and Section IV 

concludes the paper. 

II. COMPRESSION NOISE REDUCTION AND ESTIMATION  

A. Framework of soft-thresholding denoising 

Soft-thresholding is widely used in image denoising 

problem based on image sparse prior model in transform 

domain. In order to enhance image sparsity, we construct 

image sparse representation with similar image patches. For 

an image, we denote    {  |‖     ‖ 
 
  } as a group of 

image patches with size of N×N. Since the image patches are 

very similar within groups, they can be sparsely represented 

with a few basis vectors in certain vector space. In this paper 

we utilize Singular Value Decomposition (SVD) of similar 

image patches to construct their sparse representation space. 

We organize a group of image patches into a matrix, denoted 

as   , each column of which corresponds to an image patch. 

Then, a group of image patches can be decomposed as, 

                                                   (1) 

where    and    are unitary matrices, the columns of each of 

which form a set of orthonormal vectors.    is a diagonal 

matrix with non-negative real numbers on the diagonal, which 

is referred to as singular values. 

 
Fig.1 Histogram of singular values of groups of image patches. 

Since the image patches in one group are very similar, only 

a small number of non-zero singular values are needed to 

represent them. This can be verified by Fig.1, which shows 

that singular value approaches Laplace distribution. Then, we 

can reduce compression noise by applying soft-thresholding 

operation to singular values of groups of image patches,  

  (  )  {
        (  )        |  |   

                                   |  |   
              (2) 

where sk is the k-th singular value of matrix   . Based on the 

discussion in [12], when signal follows Laplace distribution, 

the optimal threshold value for the k-th singular value,   , is,   

    √      
                                      (3) 

where       and      are the standard deviation of 

compression noise and image signals corresponding to the k-

th singular value in group   , respectively. The image patches 

are restored as, 

 ̂      
( )
                                     (4) 

where   
( )

is the matrix with shrunked singular values. Then, 

the high quality image is reconstructed with weighted average 

of all the overlapped image patches after thresholding. The 

weights are designed with the number of non-zero singular 

values, 

       (  
  

  
 
 

  
)                                      (5) 

where    and    are the number of non-zero singular values 

and the number of the diagonal elements of singular matrix Si 

for group   . Therefore, the most important factor for our 

soft-thresholding method is to estimate the standard deviation 

of compression noise and original image signals. 

B. Compression noise estimation via patch clustering 

Compression noise is mainly caused by quantization, and is 

related with both quantization steps and image signal 

distribution. Considering variations of image signals, we 

estimate standard deviation of compression noise and image 

signals for every group individually, based on the assumption 

that image patches in the same group approximately follow 

the same distribution. For every group of image patches, we 

first take the average of all image patches,  ̅ , as an initial 

estimation of original signals. 

In order to estimate the compression noise level, we take 

the following image spatial model, 

 (     )      
|     |  

|     |                  (6) 

where  ( ) is the correlation coefficient function for any two 

image pixels    and    with their coordinates (     )  and 

(     ) , and    and    are the correlation coefficient of 

neighboring pixels in the horizontal direction and vertical 

direction, respectively. Then, the variance of DCT 

coefficients can be calculated as, 

  
 (   )    

 ∑           (     )   
 

|     |  
 

|     |         (7) 

where       and       are the elements of DCT matrix and 

|     |  and |     |  represent the distance of pixel j1 and j2 

in horizontal direction and vertical direction, respectively. Based on 

the derived standard deviation of DCT coefficients in Eqn.(7), 

the compression noise variance in every band is able to be 

formulated as follows. 

  
 (   )  ∫ (    (   ))

 
 ( | (   ))  

 

 

 
 

 

          (8) 

where q = Q(u,v) is the quantization step for band (   ) and 

  ( ) is the probability density function of compression noise, 

which is determined by the distribution of DCT coefficients. 

In this paper, we assume that the DCT coefficients follow 

Gaussian distribution. Then, the standard deviation of noise in 

group   ,      , is estimated by averaging   (   ) in all the 

bands of N×N image patch. The standard deviation of image 

patch corresponding to k-th singular value is calculated as,  

     √   (
  
 

  
      

   )                         (9) 

C. Iteration improvement and quantization constraint 

In noise estimation, we take the average of similar patches 

as an initial estimation to derive noise variance, which may 

lead to bias to compression noise level. Therefore, we 

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 716 APSIPA ASC 2015

lenovo
Typewritten Text



perform the soft-thresholding operation to every group 

iteratively by updating the standard deviation of compression 

noise as, 

     
(   )     (     

( )   ( )  )                (10) 

where  ( ) is the standard deviation of the difference between 

the reconstructed images in the k-th iteration and the decoded 

image. In every iteration, the reconstructed image is divided 

into blocks as that in compression process, and each block is 

transformed with DCT. The estimated DCT coefficients are 

projected to a narrow quantization interval to avoid over-

smoothing [3]. 

III. EXPERIMENTAL RESULTS 

In this section, we evaluate our proposed method by 

comparing to representative image denoising methods, 

NLM[1], BM3D[9], PSW[3] and FoE[4]. Herein, NLM and 

BM3D are two general denoising methods for different noise 

types, while PSW and FoE are two well-known denoising 

methods specially designed for compression noise. PSW and 

FoE can estimate their parameters from compressed images 

automatically, but NLM and BM3D need the standard 

deviation of compression noise to determine their parameters. 

In order to compare with their best performance, we assign 

the real standard deviation of compression noise to NLM and 

BM3D algorithms, which is not available for denoising 

problem in practice. Six test images, which are widely used in 

image processing, are firstly compressed by JPEG, and then 

restored by the compared methods and our proposed method.  

Fig.2 plots the PSNR curves of the different image restored 

methods for JPEG compressed images at different quality 

factors (QF), which range from 1 to 100 (1 means lowest 

compression quality and 100 corresponds to highest 

compression quality) to scale quantization matrix. These 

results show that our proposed method significantly improve 

the quality of JPEG images in a large quality range. 

Especially for image Barbara, our method achieves more than 

3.5+ dB compared with decoded JPEG image, even compared 

with state-of-the-art denoising methods, it also achieves up to 

2+dB. Although the true values of compression noise variance 

are utilized to determine parameters in NLM and BM3D, their 

performances are still obvious inferior to our methods. In 

addition, the performance of NLM decreases along with QF 

increase, which implicitly shows the global noise variance 

cannot well reflect content-dependent compression noise level.  

Besides objective quality improvement of our proposed 

method, the perceptual quality of the restored images is also 

significantly improved. Fig.3 shows the restored image, 

Barbara, and our method achieves most visual pleasing 

results, especially in the scarf area. 

IV. CONCLUSIONS 

In this paper, we propose a soft-thresholding scheme to 

improve the quality of compressed images. The main 

contribution of this work is the data-driven estimation method 

for standard deviation of compression noise from groups of 

image patches with similar structures. Experimental results 

demonstrate that the proposed scheme significantly improves 

the quality of JPEG images. In future work, we will further 

optimize the accuracy of compression noise estimation and 

utilize it to improve other image processing applications.  
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(a) Alfred                                                        (b) Barbara                                                               (c) Boat 

 
(d) Hat                                                            (e) Motor                                                                 (f) Parrot 

Fig. 2. Image PSNR values with different restoration methods at different JPEG QF 

 

   
(a) JPEG (25.6 dB)                                    (b) NLM (26.46 dB)                                      (c) BM3D (26.45 dB) 

   
(b) FoE (26.19 dB)                                    (c) PSW (26.04 dB)                                      (d) Proposed (28.29 dB) 

Fig. 3. Image visual quality comparison of different restoration methods for Barbara at QF=10. 
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